Semi-supervised Selective Generator Learning for Trustworthy Language Generation

Minjae Lee¹, Kyungmin Kim¹, Taesoo Kim², and Sangdon Park¹

Motivation

- Trustworthy language generation is crucial for the deployment of large language models (LLMs) in critical decision-making systems.
- ► Hallucination is one of the main bottlenecks toward trustworthy language generation.
- ► Given an LLM, our main objective is to **control the rate of** hallucination to the target level with a theoretical guarantee.

Related Work: Selective Classification

- ► Selective prediction is a principled way of controlling the error rate to the target level in supervised learning.
- ► Given a generator, a selective predictor (1) returns "I don't know" (IDK) on the input that the model is uncertain, and (2) controls the error rate on predicted outputs.
- ► Geifman and Yaniv (2017) applies the selective prediction to classification tasks, where the learned selective classifier \hat{S} controls the misclassification error $\mathcal{R}_{\mathsf{EM}}(\hat{S})$ of the classifier \hat{y} on test data with theoretical guarantee.

$$\mathcal{R}_{\mathsf{EM}}(\hat{S}) := \mathbb{P}_{(\mathbf{x},y)\sim\mathcal{D}}ig\{\hat{y}
eq y \mid \hat{S}(\mathbf{x})
eq \mathsf{IDK}ig\}$$

► However, unlike the supervised set-up, **generation problems** lack an appropriate metric for correctness evaluation – metric misalignment

Question (x)	Who played George Hazard's wife in North and South?	What is the setting of the story of Robin Hood?			
Correct Answer (y)	Sherwood Forest				
Generated Answer $(G(\mathbf{x}))$	Lesley-Anne Down played George Hazard's wife in North and South. (wrong)	The story of Robin Hood is set in medieval England, in the Sherwood Forest. (correct)			
SG-EM	accepted	rejected			
CSGen-MS (ours)	rejected	accepted			

Table 1:Selective generation examples of SG-EM and CSGen-MS using GPT-3.5-turbo

Main Contribution: Addressing Metric Misalignment via Textual Entailment

lacktriangle The textual entailment relation R_E is a subset of ordered pairs of declarative sequences $(y',y) \in \mathcal{Y} \times \mathcal{Y}$ as follows:

$$(\mathbf{y'},\mathbf{y})\in R_E$$
 if $\mathbf{y'}$ implies \mathbf{y} .

 \triangleright Then, given a reference answer y that is true given the input sequence x, the correctness of the generated sequence $G(\mathbf{x})$ can be evaluated by an entailment set function $m{E}_{\mathsf{true}}$ defined as follows:

$$E_{\mathsf{true}}(\mathbf{y}) := \{ \mathbf{y}' \in \mathcal{Y} \mid (\mathbf{y}', \mathbf{y}) \in R_E \}. \tag{1}$$

Prolem: Selective Generation

lacktriangle Given a generator G, a selective generator \hat{S} consists of the generator and the selection function pair (G, \hat{s}) as follows:

$$\hat{S}(ext{x}) := egin{cases} G(ext{x}) & ext{if } \hat{s}(ext{x}) = 1 \ ext{IDK} & ext{otherwise} \end{cases}$$

 \triangleright A common choice of \hat{s} is a single-threshold indicator function based on an uncertainty measure $f_M:\mathcal{X} imes\mathcal{Y} o\mathbb{R}^+$ called scoring function as follows:

$$\hat{s}(\mathbf{x}) := 1(f_M(\mathbf{x}, G(\mathbf{x})) \ge \tau). \tag{2}$$

ightharpoonup Our main goal reduces to learn \hat{S} (au if we consider (2)) that controls FDR-E $\mathcal{R}_{R_E}(\hat{S})$, which is defined based on (1) as follows:

$$\mathcal{R}_{R_E}(\hat{S}) := \mathbb{P}\{G(\mathrm{x})
otin E_{\mathsf{true}}(\mathrm{y}) \mid \hat{S}(\mathrm{x})
otin \mathsf{IDK}\},$$

requiring expensive human annotations on $e:=1(G(\mathbf{x})\in E_{\mathsf{true}}(\mathbf{y}))$.

▶ Leveraging PAC prediction set learning algorithm, we fully exploit the unlabeled data \mathbf{Z}_U in learning \hat{S} by estimating an entailment set function $\hat{E}: \mathcal{Y}
ightarrow 2^{\mathcal{Y}}$, which pseudo-labels the entailment relation and satisfies $\mathbb{P}_{\mathrm{Z}}\{\mathbb{P}_{(\mathrm{x},\mathrm{y},e)\sim\mathcal{D}}\{e=0\land\hat{e}=1\mid\hat{S}(\mathrm{x})
eq \mathtt{IDK}\}\leq\epsilon_{E}\}\geq1-\delta_{E},$

$$\mathbb{P}_{\mathrm{Z}}ig\{\mathbb{P}_{(\mathrm{x},\mathrm{y},e)\sim\mathcal{D}}\{e=0\land\hat{e}=1\mid\hat{S}(\mathrm{x})
eq \mathtt{IDK}\}\leq\epsilon_{E}ig\}\geq1-\delta_{E},$$
 where $\hat{e}:=1(G(\mathrm{x})\in\hat{E}(\mathrm{y})).$

CSGen-MS: Semi-supervised Selective Generator Learning with Model Selection

Figure 1:Training and inference phase of CSGen-MS

Controllability Guarantee on the Rate of Hallucination

Theorem. $\mathcal{A}_{CSGen-MS}$ satisfies the following guarantee on FDR-E as follows: $\mathbb{P}\Big\{\mathbb{P}\{G(\mathbf{x})
otin E_{\mathsf{true}}(\mathbf{y}) \,|\, \hat{S}(\mathbf{x})
eq \mathtt{IDK}\} \leq \epsilon_S 1(\hat{U}
eq \epsilon_S) \,+\, \hat{U}1(\hat{U}
eq \epsilon_S)\Big\} \,\geq\, 1 - \delta.$

Lemma (SC for Perfect Controllability). If the estimated entailment set function $ilde{E}$ well separates entailment labels as E_{true} , and f_{M} is perfectly calibrated with respect to \hat{E} , FDR-E is monotonically non-increasing in au_S .

Experiment

▶ In Figure 3, we can see that the error rate(**FDR-E**), we want to control, is well controlled under the user-defined value ϵ_S .

Figure 2:Box plots of FDR-E by selective generator learning algorithms using GPT-3.5-turbo

- ► In Table 2, our method CSGen-MS can overall achieve desired FDR-E guarantees with better efficiency compared to baselines.
 - ▶ efficiency: the ratio of data selected in the test set

Model GPT-3.5-turbo					Alpaca-7B				
Method		Heuristic		Certified		Heuristic		Certified	
		SGen-PL	SGen-PFL	CSGen	CSGen-MS	SGen-PL	SGen-PFL	CSGen	CSGen-MS
$\overline{f_{M_1}}$	FDR-E	0.0565	0.0449	0.0216	0.1611	0.0047	0.0041	0.0278	0.0142
	Efficiency	0.3472	0.2741	<u>0.1412</u>	0.8422	0.0305	0.0271	$\underline{0.1186}$	0.1532
$\overline{f_{M_2}}$	FDR-E	0.1561	0.1844	0.1645	0.1611	0.0393	0.0454	0.0149	0.0142
	Efficiency	0.8339	0.8904	0.8488	0.8422	0.2759	0.2936	0.1634	0.1532
Avera	age Efficiency	0.5906	0.5823	-	0.8422	0.1532	_	-	0.1532

Table 2:FDR-E and selection efficiency by selective generator learning algorithms on two LLMs The best results are highlighted in **bold** and results from methods that do not satisfy ϵ -guarantee are underlined.

Limitation

- ► PAC guarantee of CSGen-MS on FDR-E bound depends on the i.i.d. assumption.
- Despite its generalizability and cost-efficiency, the applicability of CSGen-MS depends on the quality of a entailment classifier on the language generation task that the user considers.
 - ▶ As every selective prediction method does, CSGen-MS also depends on the quality of a scoring function.
 - Future work: Designing a learning algorithm on a general class of neuro-selection functions